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Introduction
• The elastic behavior of a crystal is described by the 

second-order stiffness tensor ௜௝, linking stress and 
strain

• Many existing tools (Elate*, ElAM, MELASA, 
MechElastic, …) use this tensor to compute and 
visualize anisotropic properties like:

• Directional Young’s modulus, shear modulus,               
Poisson’s ratio

• These tools typically work in Cartesian coordinates, 
which are:

• Effective for high-symmetry lattices (e.g., cubic)

• Less intuitive for low-symmetry systems
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*R. Gaillac et al.: J. Phys. Condens. Matter 28, 275201 (2016). https://progs.coudert.name/elate
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Motivation

• In low-symmetry crystals (e.g. tetragonal), analysis 
should reflect crystallographic directions and planes

• Miller indices ([uvw], (hkl)) provide a more natural 
description of material directions and planes

• Example: in tetragonal crystals, the [101] direction is not 
perpendicular to the (101) plane due to c/a ≠ 1

• A new tool is needed to:
• Bridge the gap between the elastic tensors and the 

crystal structure

• Provide analysis in crystallographic (not just Cartesian) 
terms
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What ElaStr Does
• ElaStr is a user-friendly online tool for analyzing elastic properties in relation 

to the crystal structure

• Reads inputs:

• 6×6 stiffness matrix ௜௝ , 3×3 matrix of lattice vectors , , or VASP POSCAR

• Miller indices of a crystallographic direction [uvw] and a plane (hkl)

• Computes elastic properties for the given [uvw] direction                                                   
and the normal to the (hkl) plane

• Visualizes results for the given (hkl) plane using:
• Polar plots

• Crystal structure in a format suitable for VESTA*

• Table of raw data

* K. Momma, F. Izumi: J. Appl. Crystallogr. 41, 653 (2008). https://jp-minerals.org/vesta/
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What ElaStr Does
• ElaStr is primary designed to visualize results from ab initio (DFT) calculations, 

regardless of the specific method used:
• Energy-strain method

• Stress-strain method

• Linea response theory

• Or experimental data can be used
• Only the stiffness matrix and structural (lattice) information are required

• Important: The stiffness matrix and lattice vectors must be defined in the 
same orientation with respect to the Cartesian coordinate system!!!

• Your stiffens matrix is dependent on the choice of the computational cell

• Miller indices are defined with respect to given cell, for example: if you describe fcc as bct
unicell with c/a = √2 then [100]bct = [110]fcc and coordination system is rotated about 45°

• In ElaStr, both the stiffness matrix and lattice vectors can be rotated together as needed
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Methodology and Functionality

• First, the direction [uvw] and the normal of the (hkl) plane are transformed to 
Cartesian coordinates and normalized:
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• Then, the members of the stiffness matrix ௜௝ are inverted to obtain the 
compliance matrix ௜௝:
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• The compliance matrix in Voight notation is expanded to full 4th-order 
3×3×3×3 tensor ௞௟௠௡:
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Methodology and Functionality

• Young’s modulus for loading along [uvw]:

• Linear compressibility in [uvw]:

• If ௖௔௥௧ and ௖௔௥௧ are perpendicular:

• Shear modulus for shearing along [uvw] in the (hkl) plane:

• Poisson’s ratio in the direction normal to (hkl) for loading along [uvw] 
direction:
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A. Marmier et al.: Comput. Phys. Commun. 181, 2102 (2010).



Faculty of Mechanical Engineering • Brno University of Technology

Methodology and Functionality

• For a given [uvw], the lowest and highest shear moduli, ௠௜௡
[௨௩௪] and ௠௔௫

[௨௩௪], as 

well as lowest and highest Poisson’s ratios, ௠௜௡
[௨௩௪] and ௠௔௫

[௨௩௪], are estimated 
by scanning of all possible plane normals ௖௔௥௧ perpendicular to ௖௔௥௧

• It is also possible to exchange ௖௔௥௧ and ௖௔௥௧and calculate, e.g., Young’s 
modulus for loading along the normal of the (hkl) plane:

• and other properties ୄ(௛௞௟) ୄ(௛௞௟)ୄ[௨௩௪] ୄ(௛௞௟)ୄ[௨௩௪]
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Methodology and Functionality

• For a given (hkl) plane (or a plane defined by [uvw] as its 
normal,) ElaStr also offers to calculate and visualize — via 
polar plots or in VESTA — the following:

• Young’s moduli for all loading directions lying in the plane

• Linear compressibilities for all deformation directions in the plane

• Minimum and maximum shear moduli for all shearing directions in 
the plane

• Minimum and maximum Poisson’s ratios for all loading directions in 
the plane

• Shear moduli for all shearing directions in the plane

• Poisson’s ratios for all directions in the plane, with loading in the 
direction of the plane normal

Poisson’s ratios 𝜈 of the TiO2

rutile structure in the (11ത0) 
plane for loading along the 

[11ത0] direction (green arrow). 
Blue arrows indicate positive 𝜈
(transverse contraction), while 
red arrows indicate negative 𝜈

(transverse expansion)
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An Example – Ni-Mn-Sn
• Ni-Mn-Sn belongs to the family of magnetic 

shape memory alloys

• Martensitic structure 4O exhibits modulation of 
(110) planes with a periodicity of two planes

• Elastic properties were studied with the help of 
Density Functional Theory (VASP)

• Exact composition Ni1.9375Mn1.5625Sn0.5

• Lattice constants: 

• a = 6.19 Å, b = 6.23 Å, c = 5.34 Å, 
α = 90.00°, β = 90.00°, γ = 92.53°

• Influence of modulation on elastic properties

A 2×2×2 supercell to describe 
modulation and off-stoichiometry
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M. Friák, M. Zelený et al.: Intermetallics 151, 107708 (2022).
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An Example – Ni-Mn-Sn

• Input data:

• Compared to the work by M. Friák, M. Zelený et al.: Intermetallics 151, 107708 (2022), the 

stiffness matrix was rotated using the rotation matrix: . This transformation was 

applied to align the orientation with the commonly used lattice vectors. In the supercell used 
in the paper, the shortest lattice constant corresponds to the b-axis, rather than the c-axis, as 
is more typical

Stiffness matrix Matrix of lattice vectors
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An Example – Ni-Mn-Sn

• Young’s moduli in the (001) plane (option 1a):
• Young’s modulus is lower along the modulation planes (179.3 GPa) compared to the 

direction perpendicular to the modulation planes (222.0 GPa) 

GPa
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An Example – Ni-Mn-Sn

• Min. (green) and max. (blue) shear moduli in the (001) plane (option 3a):
• The lowest shear moduli (42.3 GPa) occurs along the (110) plane and perpendicular to 

the (110) plane

GPa
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An Example – Ni-Mn-Sn

GPa

⊥(001)

⊥
(1

10
)

• Does the lowest shear moduli (42.3 GPa) really corresponds to the [ ]( ) 
shear system? Check all shearing planes for the [ ] direction (option 7b)

• Shear moduli for all shearing planes corresponding to the [ ] direction

• The green arrow corresponds to the shearing direction, while blue arrows indicates 
normals of shearing planes
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An Example – Ni-Mn-Sn
• Or check all shearing directions in the (110) planes (option 5a)

• Shear moduli for all shearing directions in the (110) planes

GPa

[11ത0]

[0
0
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An Example – Ni-Mn-Sn

• Poisson’s rations in the (001) plane for loading along the [001] direction (option 8a):
• The highest contraction along the (110) planes (0.39), the lowest for the direction 

perpendicular to the (110) planes (0.15) 
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Outlook
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